パッシブ制振構造設計・施工マニュアル 次

目

第1章	基本事項	
1.1	用語	1
1.2	パッシブ制振構造の分類	2
1.3	パッシブ制振構造の基本性能	6
1.4	適用範囲	6
第2章	パッシブ制振構造の目標性能	
2.1	地震被害と制振設計の留意点	9
2.2	要求性能と限界状態	11
2.3	制振部材が想定する設計条件とベンチマーク	13
2.4	目標性能の設定	14
2.5	制振構造の計画と設計法	15
2.6	長周期・長継続時間地震動に対する制振ダンパーの性能	16
第3章	一質点制振構造の力学原理と性能曲線	
3.1	制振による応答制御の原理	23
3.2	制振構造の履歴特性とその効果	27
3.3	鋼材・摩擦ダンパー制振構造の性能曲線	31
3.4	オイルダンパー制振構造の性能曲線	36
3.5	粘弾性ダンパー制振構造の性能曲線	43
3.6	粘性ダンパー制振構造の性能曲線	48
第4章	多質点制振構造の設計法と評価法	
4.1	一質点系と多質点系における等価性	57
4.2	非制振構造における層剛性と層間変形角の評価	60
4.3	鋼材・摩擦ダンパー多質点制振構造の設計法	62
4.4	オイルダンパー多質点制振構造の設計法	66
4.5	粘弾性ダンパー多質点制振構造の設計法 ······	68
4.6	粘性ダンパー多質点制振構造の設計法	71
4.7	間柱型鋼材・摩擦ダンパー多質点制振構造の設計法	73
4.8	簡易応答予測法の提案	77
第5章	制振部材の時刻歴解析モデル	
5.1	鋼材・摩擦ダンパーの時刻歴解析モデル ·······	91
5.2	オイルダンパーの時刻歴解析モデル	99
5.3	粘弾性ダンパーの時刻歴解析モデル	104
5.4	粘性ダンパーの時刻歴解析モデル	
5.5	粘性壁ダンパーの時刻歴解析モデル	121
5.6	速度依存制振部材の試験法に関する注意事項	126

第6章	制振構造の振動解析モデル	
6.1	振動解析モデルの作成上の留意点	131
6.2	テーマストラクチャーを用いた振動解析検討例	133
6.3	減衰タイプの違いによる地震応答解析結果の比較	150
第7章	オイルダンパーの設計	
7.1	オイルダンパーの基本	153
7.2	オイルダンパーの動的特性と適用範囲	156
7.3	オイルダンパーの性能試験および評価法	161
7.4	オイルダンパーの限界状態	166
7.5	オイルダンパーの性能評価上の留意点	167
7.6	オイルダンパー周辺架構の設計	168
第8章	粘性ダンパーの設計	
8.1	粘性ダンパーの基本	171
8.2	粘性ダンパーの動的特性と適用範囲	175
8.3	粘性ダンパーの性能試験および評価法······	182
8.4	粘性ダンパーの限界状態	186
8.5	粘性ダンパーの性能評価上の留意点	187
第9章	粘弾性ダンパーの設計	
9.1	粘弾性ダンパーの基本	189
9.2	粘弾性ダンパーの動的特性と適用範囲	193
9.3	粘弾性ダンパーの性能試験および評価法	201
9.4	粘弾性ダンパーの限界状態······	205
9.5	粘弾性ダンパーの性能評価上の留意点	205
第10章	章 鋼材ダンパーの設計	
10.1	鋼材ダンパーの基本	209
10.2	鋼材ダンパーの動的特性と適用範囲	214
10.3	鋼材ダンパーの性能試験および評価法·······	219
10.4	鋼材ダンパーの限界状態	222
10.5	鋼材ダンパーの性能評価上の留意点	224
第115	章 摩擦ダンパーの設計	
11.1	摩擦ダンパーの基本	227
11.2	摩擦ダンパーの動的特性と適用範囲	234
11.3	摩擦ダンパーの性能試験および評価法	237
11.4	摩擦ダンパーの限界状態	240
11.5	摩擦ダンパーの性能評価上の留意点	240

第12	章 制振部材取付け部の設計	
12.1	制振ダンパーの減衰抵抗力と取付け方法	243
12.2	制振部材取付け部設計の基本方針	247
12.3	主架構柱-梁部材への応力伝達	250
12.4	制振構造の主架構設計用層せん断力	256
12.5	屋上設置風揺れ対応 TMD 等の地震時対策	258
12.6	制振ダンパー構造形式に応じた主架構への付加応力	260
12.7	設計式に関する参考資料	267
第13	章 制振性能の検証・表示	
13.1	制振性能の検証	271
13.2	制振性能の表示	271
第14	章 品質管理	
14.1	品質管理体制	273
14.2	製作工程と品質管理	274
14.3	性能試験確認項目	274
14.4	受入れ検査・施工時検査・竣工時検査	276
第15	章 施工計画	
15.1	施工上の留意点	281
15.2	施工時の保管・養生	281
15.3	取付け部の施工管理項目	281
第16	章 維持管理	
16.1	基本的考え方	283
16.2	オイルダンパーの維持管理	283
16.3	粘性ダンパーの維持管理	284
16.4	粘弾性ダンパーの維持管理······	284
16.5	鋼材ダンパーの維持管理	285
16.6	摩擦ダンパーの維持管理	285
付録		
A.1	設計実施例	287
•	i例 1 オイルダンパー・コア連結 X 階建て集合住宅	207
	[例 2 粘性ダンパー・S 造 38 階建て事務所	
	1例 3 粘弾性ダンパー・柱 CFT-S 造 11 階建て事務所	
	[例 4 鋼材ダンパー・S 造 16 階建て事務所	
	i 例 5 オイルダンパー・S 造 53 階建て事務所の改修	
	i例6 摩擦ダンパー・SRC+RC 造9階建て共同住宅の改修	

A2	テーマストラクチャー 341
1	はじめに
2	テーマストラクチャー
3	ブレース型鋼材・摩擦ダンパー設計例
4	ブレース型オイルダンパー設計例
5	ブレース型粘弾性ダンパー設計例
6	ブレース型粘性ダンパー設計例
7	間柱型鋼材・摩擦ダンパー設計例
A3	技術データシート437
1	オイルダンパー
2	粘性ダンパー
3	粘弾性ダンパー
4	鋼材ダンパー
5	摩擦ダンパー