システムプラザ横浜3号館

原嶋 幸一

牧部一成

1 はじめに

本建物は、神奈川県横浜市に建設された7階建の業務ビルである(2009年4月竣工)。

既存1号館・2号館と一体管理がなされ、相互連携による機能アップが図られている。同じ建物高(最高限度地域内)で同形式にて建設された2号館(2000年9月竣工)に対して、最新ニーズに合わせた基準階高+250mm、および積載荷重+5kN/m²という仕様拡張が達成されている。

2 建物概要

建 設 地 神奈川県横浜市

建 築 主 BHKビジネス(株)

建築設計 鹿島建設(株)横浜支店

構造設計 鹿島建設(株)横浜支店

設備設計 (株)日立プラントテクノロジー

施 工 鹿島建設(株)横浜支店

建物用途 事務所

延床面積 10,754.44m²

建築面積 1,512.72m²

建物規模 地上7階、塔屋1階

軒 高 30.32m

基準階階高 4.45m(図3)

工 期 2008年3月~2009年4月

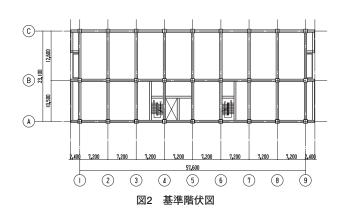
構 造 形 式 1階~R階:プレキャスト(PCa)

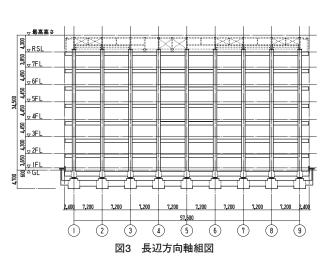
プレストレストコンクリート(PC) 造

(PCaPC圧着工法)

基礎:鉄筋コンクリート造

塔屋:鉄骨造


床 : ハーフPC板 (WT板)


外壁:PCカーテンウォール

基礎形式 直接基礎

図1 建物パース

3 構造計画概要

本建物は、PCaPC圧着工法と免震構法を組み合わせている。PCaPC圧着工法は、あらかじめ工場で製作された柱、梁のプレキャスト部材に現場で緊張力を導入し、圧着接合にて躯体を構築していく工法である(図4)。工場生産により高品質が確保され、現場作業を簡略化し、廃棄物を大幅に削減することができる。各部材は高強度コンクリートを使用しているため、耐久性にも優れている。また、プレストレスト構造であるため、RC造では難しいロングスパンの梁を可能とし、梁せいを抑えることにより、建物高さの規制がある中で階数と必要天井高を確保している。本建物では、床積載荷重10kN/m²、12.6mスパンの架構を850mmの梁せいで構成している(写真1)。

基礎は直接基礎(独立フーチング基礎)とし、GL-4.0m以深のN値50以上の上総層(土丹層)を支持層としている。

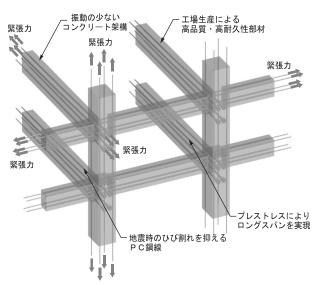


図4 PCaPC圧着工法

写真1 上部架構内観(12.6mスパン)

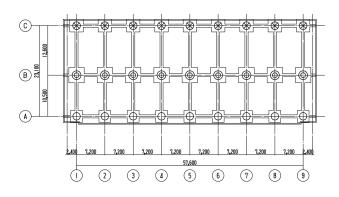
本建物の免震システムは、1階床下に高減衰ゴム系 積層ゴム支承を使用している。径は1000 ϕ 、900 ϕ 、 850 ϕ を各9基、計27基を用いている。ゴム層厚はす べて20cmである(写真2)。

 $\gamma = 100\%$ (20cm) 変形時での建物固有周期は、約4 秒とし、免震ピットの水平クリアランスは60cm、上下クリアランスは5cm確保している。

免震材料下部は、密実なコンクリート打設と設置 面の精度が確保されるよう、アンカーボルトを取り 付けたリング状のプレートを使用した。免震材料上 部の躯体から部材をPCa化し、工期短縮を図ってい る(写真3)。以下、構造全体概要を表1に示す。

写真2 免震材料の設置

写真3 免震材料とPCaフーチング


表1 構造全体概要

骨組形式 種 別	1階~R階;柱梁ともPCaPC造 (長辺短辺方向とも純ラーメン構造) 基礎:鉄筋コンクリート造				
	柱 (mm): 900×900				
	大梁(mm): 600×850				
	(1 階:600×1200)				
柱・はり	PCa 部材コンクリート:Fc60				
断面・材料	現場打設コンクリート:Fc24~30				
	鉄筋:SD295A~SD390,KSS785				
	PC 鋼材:PC 鋼棒(柱)32 φ (SBPR1080/1230)				
	PC 鋼より線(梁)15.2 φ (SWPR7B)				
柱・はり	1 階∼R 階 : PC 圧着				
接合部	基礎:RC 造				
床形式	ハーフ PC 合成床板				
	外径(mm)	1000 φ	900 φ	850 φ	
	ゴム層厚	6.7×30=	6.0×33=	5.7×35=	
高減衰積層ゴム	(mm)	201	198	200	
	平均面圧	12.5N/mm ²	11.2N/mm ²	10.8N/mm ²	
	(長期)	12.011/1111112	11.211/1111112	10.01\/1111112	

4 免震構造概要

免震層の長期軸力は、5,700~10,900kNである。建物妻側の1、9通りの軸力は、片持ちスラブとPCカーテンウォールの重量により、中柱とほぼ同じ軸力となっており、免震材料の引抜き抵抗に対して有効となっている。これら長期軸力に対して、積層ゴムの長期面圧が12N/mm²程度以下となるよう径の設定を行った(図5)。

免震層での偏心率は、長辺方向0.2%、短辺方向 0.12%となっている。

免震材料	記号	サイズ	基数
	0	1,000 ≠	9
高減衰積層ゴム H=200	\otimes	900 ቀ	9
	0	850 ≠	9

図5 免震材料配置

5 設計方針

耐震性能目標は、表2のように定めた。

6 地震応答解析

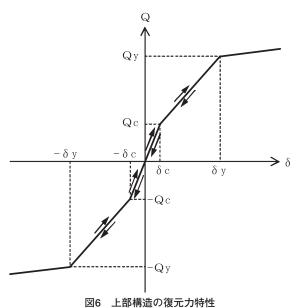
1) 振動解析モデル

解析モデルは、各階床位置を質点とする8質点等価曲げせん断モデル、免震層は免震材料の特性を評価したスウェイ・ロッキングばね(ロッキングばねは弾性)としている。

上部構造のスケルトンカーブは、Tri -Linear型とし、履歴法則は、PCaPC造の復元力特性を考慮して長辺、短辺方向とも履歴エネルギー消費のない非線形弾性とした(図6)。免震層の高減衰積層ゴムの復元

表2 耐震性能目標

	荷重・地震動	上部構造			免震部材	下部構造	
静的	長期	RC 部材:長期許容応力度以内 PC 部材:長期許容応力度以内 梁中央下端は長期許容引張応力度以内 終局耐力≥1.7(G+P)+X、1.2G+2.0P+X ¹⁾			基準面圧以下を原則とし、 これを超える場合でも基 準面圧の1.2倍以下	長期許容応力度以内	
	地震力	ベースシアー 係数 CB ²⁾	最大層間変形角 (rad)	PC 梁の 塑性率 ³⁾	PC 柱脚の 塑性率 ³⁾		
	設計せん断力時	CB=0. 12	1/200 以内	0.8以内	0.8 未満		短期許容応力度以內
	終局強度用 せん断力時	CB=0. 18	1/100 以内	1.0以下	1.0 未満		
	保有水平耐力時	_	1/100	4.0以下	2.0以下	1	
	地震動	最大応答層間変形角		最大応答層せん断力		安定変形	
動的	稀に発生する 地震動	1/400 以内		_		20cm(γ=100%)以内 引抜力が生じない	短期許容応力度以內
	極めて稀に発生する地震動	1/200 以内		設計せん断力以内		性能保証変形 50cm(γ=250%)以内 引抜力が生じない	短期許容応力度以内


¹⁾ 長期における記号、G: 固定荷重による応力、P: 積載荷重による応力、X: プレストレス力の導入に伴う2次応力

²⁾ CB: ベースシアー係数 (終局強度用せん断力=1.5×設計せん断力)

³⁾ 部材塑性率: $\mu = \theta \diagup \theta$ y (θ : 部材の曲げ回転角、 θ y : 部材の曲げ降伏回転角)

力は、修正Bi-Linear型とした。

上部構造の減衰は、1階床を固定とした場合の1次振動に対して3%の初期剛性比例型の内部粘性減衰、免震層については0%とした。建物の固有周期は、表3に示すように1階床固定時が1.1秒に対して、レベル2相当時が4.7秒である。

・ 工品情温の及2007時

表3 固有周期

方向	1 階床固定	1階床固定 レベル 1 (γ=100%)	
長辺方向	1.09 秒	3.99 秒	4.66 秒
短辺方向	1.10 秒	3.99 秒	4.66 秒

2) 入力地震動一覧

振動解析に用いた入力地震動は、告示3波(乱数位相、八戸位相、神戸位相)と観測波3波とした(表4)。 工学的基盤は、基礎下端の土丹層とし、これら6波を 免震材料の基部より直接入力した。

表4 入力地震動一覧

• 種類 •		稀に発生する		極めて稀に発生する	
	地震動波形	地震動(レベル 1)		地震動(レベル2)	
		加速度	速度	加速度	速度
		(cm/s^2)	(cm/s)	(cm/s^2)	(cm/s)
告示波	告示波 A (乱数位相)	77	9	387	47
	告示波 B (八戸位相)	77	10	384	51
	告示波 C (神戸位相)	77	12	383	58
観測波	El Centro 1940 NS	255	25	511	50
	Taft 1952 EW	248	25	487	50
	Hachinohe 1968 NS	167	25	333	50

3) 応答解析結果

図7に長辺方向の応答結果を示す。各階の最大応答加速度は200gal以下、免震層の最大変位は32.4cm、各階の最大層間変形角は1/500以下、免震材料は上下地震動を含め引抜きは生じておらず、表2の耐震性能目標を十分に満足している。

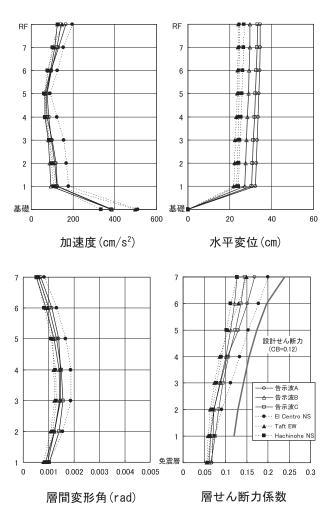


図7 地震応答解析結果(レベル2,長辺方向)

7 おわりに

無事竣工を迎えることができ、お客様をはじめ、 関係者一同に厚くお礼申し上げます。また本建物の 設計において、ご協力いただいた(株)PC建築技術研 究所をはじめ、関係者の方々に感謝いたします。

【参考文献】

- 1)「PC部材の履歴特性とPC造建物の地震応答性状」、林・岡本・小谷・加藤・傅、プレストレストコンクリートVol.37,No4,Jul.1995
- 2)「小田急海老名分譲マンションB・C街区(VINA MARKS)」、 丸山、MENSHIN NO.41 2003/8