都城市郡医師会病院

鈴木 正英 伊藤喜三郎建築研究所

田久保 達也

1 はじめに

都城市郡医師会病院、都城夜間急病センター及び 都城健康サービスセンターの3施設は、昭和60年の 開業以来、総合的なフォローシステムにより、24時 間365日切れ目のない救急医療体制を構築するとと もに、都城北諸県圏域及び圏域周辺の住民への安全・ 安心な医療の提供及び健康増進を担う施設として役 割を果たしてきた。

近年、施設の老朽化や狭隘化、位置の偏在等の問 題が顕在化し、広域的な高次救急医療拠点としての 機能強化及び広域からのアクセス性の向上のため に、この3施設を移転する「都城地域健康医療ゾー ン整備事業」を推進する運びとなった。

「都城地域健康医療ゾーン整備事業」は、都城市・ 都城市北諸県郡医師会、北諸県郡三股町との調整に 基づき策定された「都城地域健康医療ゾーン整備基 本構想・基本計画」、「建築設計与条件書」を基に、 都城市北諸県郡医師会・都城市・北諸県郡三股町及 び設計者の4者で設計を進め、21世紀にふさわしい 新時代の病院建築の実現を目指して、「都城市郡医 師会病院」の建設を計画した。

図1 鳥瞰写真

2 建築概要

建	築	場	所	宮崎県都城市太郎坊町1364番-1					
敷	地	面	積	29,818.27m ²					
建	築	面	積	5,466.19m ²					
延	床	面	積	17,870.57m ²					
規			模	地上5階 鉄骨造					
最	高	高	さ	29.8m					
用			途	病院					
建	釣オ	記さ	主	都城市北諸県郡医師会					
設	計	監	理	株式会社 伊藤喜三郎建築研究所					
施			工	株式会社 大林組 九州支店					

図2 外観写真

3 構造計画概要

本建物は、地上5階、軒高29.1m、最高部高さ 29.8mの鉄骨造による病院である。

免震材料として、天然ゴム系積層ゴム支承、鉛プ ラグ挿入型積層ゴム支承、弾性すべり支承およびオ イルダンパーを採用した基礎免震構造建築物であ る。免震層のクリアランスは600mmとした。

平面形状はX方向11スパンの100.0m、Y方向6スパンの52.8mで、スパンは8.8mx8.8mグリッドを基本と

している。1、2階は長方形の形状となっており、3、 4階に45°振ったフレームを構成し病室を配置して いる。5階に設備・電気関係諸室を配置し、最上部 にヘリポートを設けた。

階高は、1、2階が4.8m、3階が3.9m、4階が4.1m、 5階が7.4mである。

共に純ラーメン架構としている。

構造種別は、鉄骨造で、骨組形式は、X・Y方向

図5 鉄骨建て方状況

4 基礎構造概要

建設地における地盤は、表土の下GL-14mあたり まで砂礫・シルトが続き、その下位GL-14~42mにシ ラスが現れる。標準貫入試験では、そのシラスのN 値は10~30と比較的大きな値となっており、GL-42m 以深にはN値50以上の非常に密で締まった固結シラ スが現れる。

PS検層結果では、GL-57m以深の地層は溶結凝灰 岩であり、N値も50以上となっており、Vs=870m/s を示しているため、工学的基盤と評価した。常時微 動測定の結果では、地盤の卓越周期は0.75~0.85秒、 せん断波速度による地盤周期判定では0.79秒、SH重 複反射増幅特性による地盤周期判定では0.82秒とい ずれもⅢ種地盤の判定となっているが、N値から判 定すると東京湾埋立地のような軟弱地盤ではないと 判断した。

基礎構造としては、GL-42m以深の固結シラスを 支持層とする杭基礎(SC・PRC・ST・PHC杭)と した。

地震動に対する杭の設計は、上部構造からの慣性 力の他に、地震時に地盤から受ける強制変位を考慮 した応答変位法により検討を行なった。

応答変位法に用いる地盤の変形量は、液状化を考 慮した地盤モデルを用いて「極めて稀に発生する地 震動」による自由地盤の地震応答解析により算出さ れた値を採用した。

各杭はマットスラブで連結し十分な剛性と面内せ ん断耐力を有する構造とした。

表1	地質層序		
地層名	地質名	N値	
盛土	砂礫及び粘性土		
上部碟質土層	砂礫	14.2	
上部粘性土層	シルト 砂質シルト	4.2	
上部砂質土層 1	礫混じり砂	5.5	/
上部砂質土層 2	シルト質シラス	4.6	1
下部礫質土層	砂礫	15.6	A
火山噴出物 1 (非溶結部)	軽石混じりシラ ス	15.6	1
火山噴出物 2 (非溶結部)	シラス	29.7	
火山噴出物 (弱溶結部)	固結シラス	103.8	1
風化凝灰岩	砂質ローム	18.8	
火山噴出物 (溶結部)	溶結凝灰岩	311.5	I look

5 免震構造概要

免震構造としてふさわしい充分な長周期化と、適 切な減衰効果が期待できる天然ゴム系積層ゴム支 承、鉛プラグ挿入型積層ゴム支承、弾性すべり支 承およびオイルダンパーを採用した基礎免震構造 とした。

表2 設計クライテリア

			•		
	項目	稀に発生する地震動時	極めて稀に発生する地震動時		
	部材応力	短期許容応力度以下	短期許容応力度以下		
上部構	層間変形角	1/500 以下	1/250 以下		
造	加速度	2000mm/s ² 以下 (1F~4F床)	2000mm/s ² 以下 (1F~4F 床)		
	免震装置	稀に発生する地震動時	極めて稀に発生する地震動時		
	共通	・水平変位は安定変形*1) 以内	 ・水平変位は性能保証変形*²⁾以内 		
… 利 鉛フ	天然ゴム系 賃層ゴム支承 ・ [*] ラグ挿入型積 層ゴム支承	 最大面圧は せん断ひずみに対応して定まる安定変形時の許容圧縮力以下 引張を生じない 	・最大面圧は せん断ひずみに対応 して定まる性能保証変形時の許 容圧縮力以下 ・最小面圧は-1N/mm ² 以上		
	弾性 すべり支承	 ・最大面圧は 30N/mm²以下 ・最小面圧は 0N/mm²以上 	 ・最大面圧は 30N/mm²以下 ・最小面圧は 0N/mm²以上 		
オ	イルダンパー	 ・水平変位 370mm 以下*³⁾ ・最大速度 1500mm/s 以下 	 水平変位 495mm 以下*³⁾ 最大速度 1500mm/s 以下 		
:1)	安定変形:限界	変形(742mm、ゴム層総厚の375%))の1/2値以下とし、		

6 時刻歴応答解析

6.1 入力地震動

入力地震動波形は、既往の標準的な観測地震動と LTEL CENTRO 1940 NS, TAFT 1952 EW, HACHINOHE 1968 NS、国土交通省告示にて示され ている解放工学的基盤における加速度応答スペクト ルに適合させて作成した時刻歴加速度波形を計画地 の地盤性状に応じて表層入力位置まで加速度増幅さ せ得られた模擬地震動波形を3波形、建設地付近の 断層を考慮したサイト波を2波形、および東海・東 南海・南海三連動地震を1波形とする。

海溝型地震として「南海地震」「日向灘地震北部」 「日向灘地震南部」の3地震、活断層地震として、え びの-小林地震を想定した結果、応答スペクトルが 最大となった「日向灘地震南部」を採用した。

		稀に発生す	る地震動時	極めて稀に発生	解析					
	地震波名	最大加速度	最大速度	最大加速度	最大速度	時間				
		(mm/s ²)	(mm/s)	(mm/s ²)	(mm/s)	(sec)				
告	KOKUJI-H(Hachinohe-NS 位相)	1427	181	5065	897	234				
示	KOKUJI-K(JMA Kobe-NS 位相)	1399	198	6904	998	60				
波	KOKUJI-R(Random 位相)	1191	155	4988	718	120				
細	EL CENTRO 1940 NS	2550	250	5100	500	53				
測	TAFT 1952 EW	2484	250	4969	500	54				
波	HACHINOHE 1968 NS	1669	250	3338	500	51				
サ	HYUGA_NS(日向灘地震南部 NS)	-	_	2405	266	150				
イ	HYUGA_EW(日向灘地震南部 EW)	_	_	2467	340	150				
ト 波	3RENDO(国交省(2010)に基づく 東海・東南海・南海三連動)	_	_	981	209	1311				

表3 入力地震動

6.2 地震応答解析

地震応答解析は入力方向に応じてX,Y,U,V方向の4 方向について検討し応答性状を確認した。

極めて稀に発生する地震動による応答結果の最大 を表4に示す。また、最大応答加速度を図10に示す。

最大応答変形角は、Y方向時の1/453であり目標値 の1/250以内である。最大応答層せん断力は、全層 にわたり設計用層せん断力以内である。

免震層の最大応答相対変位は、いずれの方向も 420mm (y=210%相当)となっており、目標値の 495mm (y=250%相当)以内である。最大応答速度 は、Y,U,V方向時の1073mm/sでありオイルダンパー の限界速度1500mm/s以内である。

1階から4階の最大応答加速度は、Y方向時の 1474mm/s²であり、目標値の2000mm/s²以下となって いる。

部位	項目	耐震性能目標	X 方向	¥ 方向	U 方向	V 方向
	最上階加速度		2796	2763	2793	2793
	(mm/s ²)	_	KOKUJI-H	KOKUJI-H	KOKUJI-H	KOKUJI·H
	1~4 階		1470	1474	1474	1474
	最大加速度	2000mm/s^2	KOKUJI-H	кокил-н	KOKUJI-H	KOKUJI·H
	(mm/s ²)		4 階	4 階	4 階	4 階
部	展明亦必存		1/463	1/453	1/458	1/458
構造	層回変形用	1/250 以内	KOKUJI-H	KOKUJI-H	KOKUJI-H	KOKUJI·H
10	(rad)		3 階	3 階	3 階	3 階
	1 階層せん断力		0.124	0.124	0.124	0.124
	係数	_	KOKUJI-K	KOKUJI-K	KOKUJI-K	KOKUJI-K
	1階転倒モルト		382760	382310	382420	382430
	(kNm)		KOKUJI-K	KOKUJI·K	KOKUJI-K	KOKUJI-K
	相対変位	安定変形以内	420	420	420	420
	(mm)	495mm 以内	KOKUJI-K	KOKUJI·K	KOKUJI-K	KOKUJI-K
免靊	層せん断力	_	0.109	0.110	0.109	0.109
層	係数		KOKUJI-K	KOKUJI-K	KOKUJI-K	KOKUJI-K
	速度	1500	1036	1037	1037	1037
	(mm/s)	1500mm/s	KOKUJI-H	KOKUJI-H	KOKUJI-H	KOKUJI·H

表4 応答結果の最大値(極めて稀に発生する地震動)

図10 最大応答加速度

6.3 吸収エネルギー

免震層全体の吸収エネルギーに対する各免震装 置の吸収エネルギーは、鉛プラグ挿入型積層ゴム 支承の吸収エネルギーの比率が29~48%、弾性すべ り支承の吸収エネルギーの比率が0~14%であり、 オイルダンパーの吸収エネルギーの比率が52~64% である。

6.4 減衰定数に対する検証

本計画では上部建物の減衰定数を2%として検討 を行っている。「建築物の減衰」では、耐震建物に ついて建物高さが30mの鉄骨造は弾性範囲内で減衰 定数は標準値を3%、推奨値を2%としている。

免震建物における減衰定数が与える影響を把握す るため、上部建物の減衰定数を1%として振動解析 を行なった。振動解析は極めて稀に発生する地震動 の告示波に対する基準性能時とした。減衰定数を 1%と2%にした場合の応答結果の比較を表5に示す。

全体的な傾向として低層階は影響が小さく上階に なるほど影響が大きくなる。これは免震層の変形時 の二次モードのよるものと考えられる。せん断力係 数の最大増加率はKOKUJI-Rとなり1.19倍である。 最大応答加速度については、減衰定数1%時には2% 時の1.1倍、最大応答層間変形角については1.19倍と なった。

入力地震動エネルギーに対する免震層のエネル ギー吸収率は減衰定数1%時が99.2%、2%時が99.0% となった。これは大変形時では免震層のエネルギー 吸収が大きく、上部架構の減衰が与える影響が小さ いために影響を受けないことを確認した。

結果、最大応答値については増加が見られるもの の、クライテリアの範囲内であり問題ないことを確 認した。

表5 減衰定数1%時のせん断力係数の増加率(X方向)

	減度1%			減衰2%			增加率		
	кокијі н	KOKUJI·K	KOKUJI·R	кокилін	KOKUJI·K	KOKUJI-R	кокијі-н	кокильк	KOKUJI·R
5階	0.277	0.277	0.308	0.260	0.263	0.259	1.07	1.05	1.19
4階	0.210	0.211	0.181	0.199	0.201	0.166	1.06	1.05	1.09
3階	0.191	0.192	0.168	0.179	0.183	0.149	1.07	1.05	1.13
2階	0.157	0.154	0.136	0.144	0.148	0.123	1.09	1.04	1.11
1階	0.127	0.129	0.109	0.119	0.124	0.103	1.07	1.04	1.07
免震層	0.094	0.112	0.080	0.094	0.113	0.079	1.00	1.00	1.00

7 おわりに

本建物は2015年2月に無事竣工を迎えた。建築主 をはじめ関係者の皆様には多大なご理解ご協力を頂 きありがとうございました。