# 1. はじめに

近年多くの建物に制振装置が適用されるが<sup>1)</sup>、実建 物における制振効果は未だ明確に評価されていない。 そのため、2009 年に E-Defense にて「実大 5 層制振 建物振動実験」(建物実験)が行われ、4 種制振ダン パーを付加した実大建物での貴重な記録が多数得ら れた(図 1)<sup>2)</sup>。その後、ダンパーの詳細検討を目的と して「ダンパー1 軸動的加振実験」(装置実験)が行 われ、支持部材の変位記録等が詳細に得られた(図 2)。

本報では、装置実験で得た記録に基づき、粘性・オ イルダンパーが持つ特有の性状を定量的に評価する。 その上で、設計で重要となる制振建物の層せん断力を 適切に評価する手法を示す。

## 2. ダンパー概要

粘性ダンパーは、ダンパー力が速度の指数乗に比例 する非線形粘性ダンパーである。オイルダンパーはダ ンパーカと速度が線形関係となるが、リリーフ弁を有 するために大振幅ではバイリニア型の履歴となる。充 填剤が粘性と剛性をもつため、粘性・オイルダンパー 共に図 3(a)のように非線形の粘性要素と線形の剛性 要素を直列に繋いだ非線形 Maxwell 体で表される。こ こに、*C<sub>d</sub>*, *K<sub>d</sub>*=内部粘性と内部剛性、*u<sub>d</sub>*, *u<sub>m</sub>*=粘性要素 変形とダンパー変形、*F<sub>d</sub>*=ダンパーカ、α=指数係数、



| <i>C</i> <sub>d</sub> 49 | α                                                                          | K <sub>d</sub><br>(kN/mm)                                                                                  |  |  |  |  |  |
|--------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 49                       |                                                                            |                                                                                                            |  |  |  |  |  |
|                          |                                                                            | 8                                                                                                          |  |  |  |  |  |
| 98                       | 0.38                                                                       |                                                                                                            |  |  |  |  |  |
| 196                      |                                                                            |                                                                                                            |  |  |  |  |  |
| 表2 オイルダンパー規格値            |                                                                            |                                                                                                            |  |  |  |  |  |
| $C_d$                    | p                                                                          | (kN/mm)                                                                                                    |  |  |  |  |  |
| 3.1                      | 0.067                                                                      | 75                                                                                                         |  |  |  |  |  |
| 6.3                      |                                                                            | 140                                                                                                        |  |  |  |  |  |
| 12.5                     |                                                                            | 300                                                                                                        |  |  |  |  |  |
| 12.5                     | 1                                                                          | 500                                                                                                        |  |  |  |  |  |
|                          | 196<br>F, D2-3F, I<br>F, D2-1F, I<br>F<br>ルダン<br><i>C</i> _d<br>3.1<br>6.3 | 196<br>F, D2-3F, D2-4F<br>F, D2-3F, D2-4F<br>F, D2-1F, D2-2F, D3-<br>F<br>$D / ダンパー 規 C_d p 3.1 6.3 0.067$ |  |  |  |  |  |

€1 粘性ダンパー規格値

D1-21, D1-31, D2-21, D2-31,
 D1-1F, D2-1F, D3-2F, D3-3F
 D3-1F

p = 2次粘性比である。両 ダンパーの履歴を図 3(b),(c)に示すが、 $K_d$ の存 在ゆえに傾いた履歴とな り、 $u_{d0}$ は $F_d = 0$ となる時 の $u_m$ 、 $K_d$ は $F_d$ が最大と なる点の割線剛性となる。  $F_d$ は粘性部速度 $i_d$ によっ



創

東京工業大学 山際







図3(a)ダンパーモデル詳細図、 (b)粘性ダンパー履歴図、 (c)オイルダンパー履歴図

て決まり、粘性ダンパーは式(1),オイルダンパーは式 (2)で表される<sup>3).4)</sup>。

$$\begin{aligned} F_{d} &= C_{d} |\dot{u}_{d}|^{\alpha} \cdot \text{sgn}(\dot{u}_{d}) \quad (\forall \forall \neg \forall \exists n) \quad (1) \\ F_{d} &= C_{d} \dot{u}_{d} \\ F_{d} &= C_{d} \dot{u}_{dy} + p C_{d} (\dot{u}_{d} - \dot{u}_{dy}) \quad (\forall \forall \neg \forall \forall n) \quad (2a,b) \\ u_{m} &= u_{d} + F_{d} / K_{d} \end{aligned}$$

ここに、*u*<sub>ay</sub>=リリーフ速度である。以後、「0」が付く ものは最大値、「<sup>^</sup>」が付くものは建物実験でのダンパ ー軸方向の値を意味する。両ダンパーの規格値を表 1.2 に示すが、本実験から得た値を後述する。

## 3. 粘性ダンパーの性能の検討

本章では過去に得た様々な理論式を用いるが、それ らは特記無き限り文献3に基づいた式である。

装置実験では、建物実験を模擬した鷹取波載加に加 え、様々な振動数、振幅の正弦波載加を行ったが、以 後正弦波(周波数f=1,2,3Hz、目標 um=0.5,1.0,3.0,6.0, 12.0,24.0,36.0mm)と、鷹取波(15%,50%,100%)載加 を検討対象とする。なお、ダンパー最大速度(50kine) を超える組合わせは対象としない。また、全ての検討 を D1-1F ダンパーのみに言及するが、他のダンパーで も同様の傾向が得られた。

## 3.1 粘性要素の振幅依存性の考察

図4に正弦波載加での $F_d$ - $u_m$ 関係の実験値を示すが、 特に小振幅において $\alpha = 1$ の線形粘性ダンパーの履歴 に近い楕円挙動となった。確認のため、規格値(表 1) を諸元としてダンパーモデル(図 3(a))で解析を行った が、特に小振幅で実験結果を精度良く再現できなかっ た。以上の背景から、粘性要素である $C_d$ ,  $\alpha$ は振幅依 存すると考え、その定量的な評価を行う。なお、ここ では $K_d$ も評価の対象とした。

正弦波載加の  $F_d$ - $u_m$ 関係履歴から  $F_{d0}$ ,  $u_{d0}$ ,  $u_{m0}$ ,  $E_d$ が 得られるので(図 3(b))、 $C_d$ , a,  $K_d$ は次式で求まる<sup>3)</sup>。こ こに、 $E_d=1$  サイクルでのエネルギー吸収量である。

$$\alpha = -\frac{1}{0.24} \log \left( \frac{E_d}{4F_{d_0} u_{d_0}} \right) \quad , \quad C_d = \frac{F_{d_0}}{(\omega u_{d_0})^{\alpha}}$$
$$K_d = \frac{C_d \, \omega^{\alpha}}{u_{d_0}^{1-\alpha}} \left[ \left( \frac{u_{m_0}}{u_{d_0}} \right)^{\frac{1}{1-0.5\alpha}} - 1 \right]^{-\frac{1}{1+\alpha}} \tag{4a-c}$$

求めた  $C_d$ , a,  $K_d$ の精度検証のため、正弦波載加で得た  $u_m$ を入力波としてダンパーモデル (図 3(a))にて解析 を行った。図4に実験との比較、図5に $C_d$ , a,  $K_d$ と $u_{d0}$ の関係を示す。解析により実験を高精度に再現でき、  $C_d$ , aの振幅依存性を確認した。図5より $C_d$ - $u_{d0}$ 関係 は1次関数を、a- $u_{d0}$ 関係は対数関数を関係式とした が、この関係が鷹取波載加で適応可能か後述する。



# 3.2 ガタが減衰効果に及ぼす影響の考察

粘性ダンパーのピン接合部にはガタが存在するこ とを装置実験より確認したが、この影響により減衰効 果を低下させる可能性がある。ここでは、ガタの存在 が及ぼす影響を定量的に評価する。



図6 付加系モデル(ガタを考慮した)の(a)モデル詳細図、 (b) 定常状態でのF<sub>d</sub>-u<sub>ee</sub>関係の模式図(粘性ダンパー)

ガタを考慮したダンパー全体を表す付加系モデル を図 6(a)に、定常状態での履歴を図 6(b)に示す。ここ に、 $K_b$ =ブレース剛性、 $\bar{u}_{ag}$ =ガタを除く付加系変形、  $L_g$ =ガタ長さ、 $K_b$ \*= $K_d$ と $K_b$ の直列体剛性である。な お、粘性ダンパーの $K_b$ は引張、圧縮側で異なり、そ れぞれ $K_b^{(+)}, K_b^{(-)}$ とするが、以後 $K_b$ はこれらの平均を 表す。

定常状態においてガタのない理想状態よりガタ長 さだけダンパー変形量が減少すると考えれば、*u<sub>do</sub>*, *E<sub>d</sub>* は次式の如く表せる<sup>3)</sup>。

$$u_{d0} = \frac{1 + (\alpha^{0.65} - 1)({}_{p}K_{d}^{"}/K_{b}^{*})}{\left[1 + ({}_{p}K_{d}^{"}/K_{b}^{*})^{2}\right]^{0.5\alpha}} \overline{u}_{ag0} \ge 0 , \quad {}_{p}K_{d}^{"} = \frac{C_{d}\omega^{\alpha}}{\overline{u}_{ag0}^{1-\alpha}}$$
$$E_{d} = 4e^{-0.24\alpha} C_{d}\omega^{\alpha} u_{d0}^{1+\alpha} \qquad \overline{u}_{ag0} = u_{ag0} - \frac{L_{g}}{2} \qquad (5a-d)$$

上式より、任意の u<sub>ag0</sub> に対して定常状態での u<sub>d0</sub>, E<sub>d</sub>を 算出できる。なお、C<sub>d</sub>, a, K<sub>d</sub> は図 5 に示す関係式から、 K<sub>b</sub>, L<sub>g</sub> は図 7 に示す手法で算出した。図 8(a) に付加系 変形に対する粘性変形の比(実効変形比)、図 8(b)に E<sub>d</sub>の計算と実験の比較を示すが、ガタを考慮した計算 が実験とほぼ一致した。図 8(a)より大振幅でガタの有 無に関わらず実効変形比が高いが、小振幅ではガタの ない理想状態でも低下し、ガタがある場合さらに低下

する。また、その傾向は高振動数ほど顕著である。図8(c)より、振動数に関わらず低振幅でエネルギー吸収量が著しく低下する傾向が分かる。







# 3.3 鷹取波解析による評価の妥当性の検証

本節では鷹取波載加での解析で精度検証を行う。鷹 取波はランダム波である為、図5に示した関係式によ り $C_d$ ,  $\alpha$ ,  $K_d$ を決定するには $u_{d0}$ が必要だが、粘性変形 最大値を $u_{d0}$ とすることで近似的に関係式を適応でき るとした(図5の黒丸)。表3に決定した値を示す。

まず、装置実験で得た um を入力とし図 3(a)に示し たダンパーモデルでの解析を行う。表3に示した実験 値に加え、規格値でも解析を用い、併せて実験結果と 比較を行う。結果を図9に示すが、規格値での解析に 対し実験値による解析精度が非常に高い。F<sub>d0</sub>, E<sub>d</sub>の実 験値に対する解析値の比を表3に示したが、規格値を 用いても正確な評価ができないことは明らかである。

次に、装置実験で得た *u*agを入力とし図 6(a)に示した付加系モデルでの解析も行った。図示しないが、実験値による解析により精度良く実験を再現できた。



表3 鷹取波入力での解析モデルの諸元と解析結果 (粘性ダンパー)

#### 4. オイルダンパーの性能の検討

本章では過去に得た様々な理論式を用いるが、それ らは特記無き限り文献4に基づいた式である。

検討対象とした載加は粘性ダンパーと同様だが、ダンパー最大速度(30kine)を超えるものは対象としない。 また、全検討を D1-1F ダンパーのみに言及するが、他のダンパーでも同様の傾向を得た。

## 4.1 粘性要素の速度依存性の考察

規格値(表 2)を諸元としてダンパーモデル(図 3(c))で 解析を行ったところ、特に小振幅で実験結果を精度良 く再現できなかった。そこで、 $C_d$ 、 $K_d$ を実験から得る 手法を示し、その精度検証を行う。なお、p、 $u_d$ 、は規 格値を用いたが、これら規格値を用いた解析により実 験を精度良く評価できたことを先に述べる。

正弦波載加の  $F_d$ - $u_m$  関係履歴から  $F_{d0}$ ,  $u_{d0}$ ,  $u_{m0}$  が得られるので (図 3(c))、次式により  $C_d$ ,  $K_d$ が求まる<sup>4)</sup>。 なお、リリーフ時は  $F_d$ の変化が小さく  $K_d$ を評価しに くいため、リリーフ前後で  $K_d$ は一定であるとし、リ リーフ前の平均をリリーフ後のK<sub>d</sub>とした。

$$C_{d} = \frac{F_{d0}}{\omega u_{d0}} , \qquad K_{d} = \frac{C_{d} \, \omega}{\sqrt{\left(u_{m0}/u_{d0}\right)^{2} - 1}} ($$
リリーフ前)  

$$C_{d} = \frac{F_{d0}}{\dot{u}_{dy} + p(\omega u_{d0} - \dot{u}_{dy})} \qquad ($$
リリーフ後) (6a-c)

以上にして求めた  $C_d$ ,  $K_d$ の精度検証のため、実験で 得た  $u_m$ を入力としてダンパーモデル (図 3(a))で解析 を行い、実験結果との比較を行った。図 10 にそれら の比較,図 11 に  $C_d$ ,  $K_d$ と粘性部速度 $\dot{u}_{a0}$  (=  $\omega u_{d0}$ )の関 係を示す。解析により実験を再現でき、約 2kine 以下 で  $C_d$ が小さくなることを確認した。



#### 4.2 数値計算によるダンパー性能の検証

以上示した性状に基づき、計算によりダンパー性能の検証を行う。まず、u<sub>a0</sub>は次式の如く表せる<sup>4)</sup>。

$$u_{ag0} = \sqrt{1 + \lambda^{2}} \cdot u_{d0} , \quad \lambda = \frac{C_{d} \omega}{K_{b}^{*}} \quad (UU - \overline{\mathcal{T}})$$

$$u_{ag0} = \frac{\mu_{a}}{\mu} \sqrt{1 + \lambda^{2}} \cdot u_{d0} \quad (UU - \overline{\mathcal{T}}) \quad (7a-c)$$

ここに、 $\mu_d$ =リリーフ率、 $\mu_a$ =付加系リリーフ率である <sup>4)</sup>。また、 $E_d$ は次式で表される<sup>4)</sup>。

$$E_{d} = \pi C_{d} \omega u_{d0}^{2} \qquad (111 - 76)$$

$$E_{d} = \left[1 + \frac{2(1-p)}{7} \left\{ \sqrt{\mu_{d}^{2} - 1} - \cos^{-1} \left(\frac{1}{\mu_{d}}\right) \right\} \right] \pi C_{d} \omega u_{d0}^{2} \quad (111 - 76)$$

$$L_d = \begin{bmatrix} 1 + \frac{1}{\pi} \\ - \frac{1}{\mu_d^2} \end{bmatrix} \begin{bmatrix} \mu_d^2 \\ - \mu_d \end{bmatrix} \begin{bmatrix} \mu_d \\ \mu_d \end{bmatrix} \begin{bmatrix} \mu_d \\ \mu_d \end{bmatrix} \begin{bmatrix} \mu_d \\ - \mu_d \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mu_d \\ - \mu_d \end{bmatrix} \begin{bmatrix} \mu_d \\ - \mu_d \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mu_d \\ - \mu_d \end{bmatrix} \begin{bmatrix} \mu_d \\ - \mu_d \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mu_d \\ - \mu_d \end{bmatrix} \begin{bmatrix} \mu_d \\ - \mu_d \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

式(2),(7),(8)より任意の $u_{d0}$ に対して正常状態での $u_{ag0}$ ,  $F_{d0}$ ,  $E_d$ が算出できる。図12に $u_{d0}$  (= $\omega u_{d0}$ )に対する実効変形比、 $F_{d0}$ ,  $E_d$ の計算と実験の比較を示すが、計算で実験値を評価できた。図12(a)より、低振動数ほど実効変形比が高く、リリーフ速度以上または低速

度領域で実効変形比が増加する傾向が確認できる。また、図 12(b),(c)より、リリーフ速度以上で *F<sub>d0</sub>, E<sub>d</sub>* が相対的に増加しにくい傾向も評価できた。



#### 4.3 鷹取波解析による評価の妥当性の検証

本節では鷹取波入力による解析で検証を行う。鷹取 波はランダム波であるため、図 11 に示した関係式を 用いて  $C_d$ ,  $K_d$ を決定するには $i_{a0}$ が必要である。そこ で、次式で示すダンパー速度を $i_{a0}$ とすることで、近 似的に関係式を適応できるとした(図 11 の黒丸)。

$$\dot{u}_{d0} = 0.7 u_{d0} \,\omega \,, \qquad \omega = 2\pi/T \tag{9a,b}$$

ここに、T = 制振試験体の1次周期である。0.7を掛けたのは、ランダム波であることを考慮するための低減係数であり、これにより15%鷹取波での解析精度が向上した。表4に決定した値を示す。

実験で得た *u<sub>m</sub>*を入力とし、図 3(a)に示したダンパーモデルでの解析を行う。表4に示した実験値に加え、 規格値でも解析を用い、実験結果と比較を行う。結果 を図 13 に示すが、規格値での解析に対し実験値での 解析精度が高い。また、*F<sub>d0</sub>*、*E<sub>d</sub>*の実験結果に対する解 析の比を表4に示すが、実験値での解析のほうがより 正解値に近いことも確認できる。

|   | 鷹                                                                                                                 | 正弦波載加から決定した値 |            |                |       | 解析(規格値)<br>/実験結果 |       | 解析(実験値)<br>/実験結果 |       |  |
|---|-------------------------------------------------------------------------------------------------------------------|--------------|------------|----------------|-------|------------------|-------|------------------|-------|--|
|   | 波                                                                                                                 | $C_d$        | 規格値<br>との比 | K <sub>d</sub> | $K_b$ | $F_{d0}$         | $E_d$ | $F_{d0}$         | $E_d$ |  |
|   | 15%                                                                                                               | 11.46        | 0.917      |                |       | 1.015            | 1.066 | 0.996            | 1.044 |  |
|   | 50%                                                                                                               | 12.59        | 1.008      | 667            | 501   | 0.936            | 0.926 | 1.010            | 1.037 |  |
|   | 100%                                                                                                              | 12.59        | 1.008      |                |       | 0.992            | 0.923 | 1.002            | 1.012 |  |
| * | C <sub>d</sub> の単位は kN/(mm/s), K <sub>d</sub> , K <sub>b</sub> の単位は kN/mm であり、p=0.067, u <sub>db</sub> =64mm/s であ |              |            |                |       |                  |       |                  |       |  |



200 <sup>F</sup><sub>d</sub>(N) <sup>200 F<sub>d</sub>(N) </sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

## 5. 制振建物の最大層せん断力の予測法

ダンパー性能の新たな知見をもとに、制振建物での ダンパー力水平成分Q<sub>d</sub>,層せん断力Q<sub>s</sub>の予測を行う。 粘性ダンパー付建物での $Q_d$ ,  $Q_s$ は式(10)により算出 できる<sup>3)</sup>。また、文献4よりオイルダンパー付建物で の $Q_d$ ,  $Q_s$ は次式の $\alpha$ を1としたものに等しい<sup>4)</sup>。すな わちいずれも次式から求まる<sup>3),4)</sup>。

$$Q_{d} = C_{d} (\omega \hat{u}_{d0})^{\alpha} \cos \theta$$
$$Q_{s} = \sqrt{\left(\hat{K}_{a}' \hat{u}_{a0} + \frac{Q_{f}}{\cos \theta}\right)^{2} + \alpha \left(\hat{K}_{a}'' \hat{u}_{a0}\right)^{2}} \cdot \cos \theta \quad (10a,b)$$

ここに、 $\theta =$ ダンパー取付角度、 $Q_f =$ 架構の層せん断 力、 $K_a$ ,  $K_a$ "=付加系貯蔵剛性,損失剛性である。

この理論を建物実験に適応させることで、評価の精 度検証を行う。各ダンパーの性能に基づき、建物実験 での層間変形角に対する Q<sub>d</sub>, Q<sub>f</sub>, Q<sub>s</sub>の予測式を作成し、 実験最大値と比較した(図 14)。このとき、Q<sub>f</sub>は 15%鷹 取波での架構せん断力と層間変形の関係から得た弾 性剛性の実験値、ωは試験体の1次固有角振動数とし た。なお、架構の曲げや軸変形の影響により付加系変 形と層間変形から求めたダンパー軸方向変形が等し くならないが、これらの変形差を加味できる弾性バネ をダンパーに直列に設け、付加系の一部として扱うこ とで簡易に評価した。結果 Q<sub>d</sub>, Q<sub>s</sub>共に加振レベル問わ ず実験結果を精度良く評価でき、Q<sub>d</sub>, Q<sub>s</sub>の最大値を 位相差も考慮して正確に評価できたといえる。



図14 建物実験の1層Y方向での各鷹取波加振におけるダンパー、 架構、システムの負担せん断力(左:粘性ダンパー、右:オイルダンパー)

## 6. まとめ

粘性・オイルダンパーの性能を実験から定量的に評価し、解析により精度検証を行った。粘性ダンパーでは粘性要素の振幅依存性、ガタの影響を解明し、オイルダンパーでは粘性要素の速度依存性を明らかにした。また、最大層せん断力の予測法を示し、建物実験結果を高精度に予測できることを示した。

#### 【参考文献】

- 1) 本免震構造協会 (JSSI): パッシブ制振構造設計・施工マニ ユアル 第2版, 2005.9
- 2) 笠井和彦,引野剛ほか:実験の全体概要および非制振状態での応 答性状 3次元震動台による実大5層制振鋼構造建物の実験研究 その1,日本建築学会構造系論文集,第663号,pp.997-1006,2011.5
- の1,日本建築学会構造系論文集、第663号,pp.997-1006,2011.5 3) 笠井和彦,鈴木陽,大原和之:減衰力が速度の指数乗に比例する 粘性ダンパーをもつ制振構造の等価線形化手法,日本建築学会構造 系論文集,第574号,pp.77-84,2003.12
- 4) 笠井和彦,西村忠宗:減衰力が速度にバイリニア的に比例する オイルダンパーをもつ制振構造の等価線形化手法,日本建築学会構 造系論文集,第583号,pp.47-54,2004.9