住宅制振設計マニュアル

目 次

はじめに

本マニュアルの位置づけ

第1章 基本事項

1.1	本	マニュアルが対象とする小規模住宅制振	1
1.2	制	振壁の必要条件	3
1.	2.1	住宅購入者のための識別法	3
1.	2.2	制振の効き方に関する注釈	5
1.3	制	辰による構造体・非構造体の性能設計	6
1.4	用	語	9

第2章 ダンパーの性能評価

2.1	戸刻	 圭住宅用ダンパーの概要
2.2	ダン	/パー載荷試験
2.	2.1	載荷試験の基本
2.	2.2	載荷・測定の方法と装置19
2.	2.3	載荷試験
2.3	ダこ	パーの履歴特性と適格性の評価
2.4	ダこ	- パー変形と荷重に関する注釈
2.5	ダこ	- パー性能確保のための留意点
2.6	ダこ	- パーの限界状態について
2.7	管理	里事項
2.	7.1	品質管理
2.	7.2	施工管理
2.	7.3	維持管理

第3章 制振壁やその他の耐力要素の性能評価

	3.1	戸刻	聿 住宅用制振壁の概要	33
	3.2	制打	辰壁の載荷試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
	3.2	2.1	載荷試験の基本・・・・・	34
	3.2	2.2	載荷・測定の方法と装置	35
	3.2	2.3	載荷試験	36
	3.2	2.4	載荷試験に関する追加事項	39
	3.3	制打	辰壁の履歴特性と適格性の評価	40
í	3.4	制	辰壁の時刻歴解析や等価線形化に用いるモデルの作成法	43

3.4	4.1	複合モデルによる2種依存性の近似43
3.4	4.2	複合モデルの作成手順
3.4	4.3	注釈47
3.5	制	辰壁における各接合部の力学挙動と制振壁の設計49
3.6	耐え	力壁・非構造壁の試験法
3.6	5.1	耐力壁の考慮
3.6	5.2	非構造壁の考慮
3.6	5.3	載荷試験
3.6	5.4	耐力壁・非構造壁の時刻歴解析に用いるモデルの作成例

第4章 入力地震動および設計クライテリアの設定

4.1	入	力地震動および設計クライテリアに関する基本方針	62
4.	1.1	入力地震動レベル(加速度応答スペクトル)	62
4.	1.2	設計クライテリア	63
4.	1.3	基本方針設定の背景	64
4.2	入	力地震波の作成例	65
4.3	模打	疑地震波を用いた設計	76
4.4	本	マニュアルにおける性能設計の考え方	77

第5章 時刻歴応答解析による地震応答評価法

5.1	は	じめに	80
5.2	ス	リップ型特性をもつ主架構の時刻歴応答解析モデル・・・・・・・・・・・・・・・・・・・・・・・・	81
5.3	制	辰壁の時刻歴応答解析モデル	82
5.4	制打	辰システムの時刻歴応答解析	83
5.5	時刻	刻歴応答解析による制振住宅の設計例	86
5.	5.1	設計条件の概要・・・・・	86
5.	5.2	収れん計算の例	87
5.	5.3	解析結果	89

第6章 等価線形理論による応答指定型の制振設計法

6.1 弹	性システムの制振による応答制御原理93
6.1.1	等価周期と等価減衰定数による応答低減
6.1.2	減衰による応答低減
6.2 バ	イリニア+スリップモデルの応答制御法
6.2.1	バイリニア+スリップモデルの概要
6.2.2	設計手順
6.3 設計	計例
6.3.1	設計条件の概要
6.3.2	設計手順の具体例

第7章 耐力壁と制振壁の許容耐力に基づく簡易制振設計法

7.1	考;	え方	106
7.2	目相	票変形角に応じた耐力壁の制振設計用短期許容せん断耐力	106
7.	2.1	制振設計用短期許容せん断耐力の求め方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	106
7.	2.2	従来の算定法による短期基準せん断耐力との比較	107
7.3	制打	辰壁の短期許容せん断耐力	109
7.	3.1	短期許容せん断耐力の求め方	109
7.	3.2	制振壁の耐力に影響をおよぼす係数αの設定における留意点	111
7.	3.3	算定例	112
7.4	簡	易制振設計の手順	114
7.5	設書	针例	115

第8章 設計解の信頼性確保のための構造計画上の諸注意

8.1 耐	力壁・制振壁の釣り合い良い配置の確認
8.1.1	時刻歴応答解析による制振設計法(第5章) または
	等価線形理論による応答指定型の制振設計法(第6章)を用いる場合 118
8.1.2	耐力壁と制振壁の許容耐力に基づく簡易設計法(第7章)を用いる場合123
8.2 水	平構面の面内剛性の確保
8.3 柱	頭柱脚接合部等の設計
8.3.1	耐力壁部分の設計
8.3.2	制振壁部分の設計
8.3.3	柱脚接合部の接合金物の入れ替え
8.3.4	柱脚接合部の接合金物の取り付け位置136
8.4 設	計例
8.4.1	2 階建ての設計例
8.4.2	平屋建ての設計例

Q & A		41
	-	

付録A1 制振設計実施例

A1.1	はじめに
A1.2	モデル建物の設定
A1.3	地震応答(非制振・制振状態)
A1.4	制振壁の最低限の容量・枚数に関する考察

付録A2 制振壁の開発者のための性能評価

A2.1	性能評価のための3種の方法	158
A2.2	性能評価の方法	160

A2.2.1	試験法	• 160
A2.2.	1.1 制振壁の試験法	• 160
A2.2.	1.2 状態 N 架構の試験法	• 160
A2.2.	1.3 状態 R 架構の試験法	• 161
A2.2.2	方法1:状態 N/R 試験による等価支持材と等価架構剛性の評価	• 161
A2.2.3	方法2:制振壁試験と状態N試験による等価支持材と等価架構剛性の評価…	• 162
A2.2.4	方法3:制振壁試験のみとダンパー力計測による等価支持材と	
	等価架構剛性の評価・・・・・	•• 163
A2.3 制持	辰壁の履歴を再現するバネモデル作成法	• 164
A2.3.1	1.5Hz で5種振幅のダンパー履歴に対し制振壁の履歴を予想	• 164
A2.3.2	制振壁試験との比較	• 166
A2.3.3	ダンパー単体試験を実施できず、かつ制振壁試験で	
	ダンパー力を計測できる場合	• 167
A2.3.4	ダンパー単体試験を実施できず、かつ制振壁試験で	
	ダンパー力を計測できない場合	• 167
A2.3.5	ダンパー量を変化させたときの履歴予測	• 168

付録A3 制振壁の許容耐力設定法の考え方の背景

A3.1	前提条件と課題	169
A3.2	方法	169
A3.3	等価線形化手法との比較	171

付録A4 制振設計用偏心率および四分割法に関する検討

A4.1	制振設計用偏心率のクライテリア	174
A4.2	制振設計における四分割法の適用	175

付録A5 入力地震波の作成方法

A5.1	入力地震波作成フロー	179
A5.2	模擬地震波の適合度評価	180
A5.3	位相特性�i・・・・・	180
A5.4	継続時間と包絡関数 E(t)	181

付録 JSSI ホームページからのダウンロード

- ・6章設計シート(エクセル)
- •模擬地震動8波×3種地盤